Home
Class 12
MATHS
If omega is a cube root of unity , the...

If `omega` is a cube root of unity , then `|(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)|` =

A

`x^3 + 1`

B

`x^3+omega `

C

`x^3+omega^2`

D

`x^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} x + 1 & \omega & \omega^2 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] where \(\omega\) is a cube root of unity, we can follow these steps: ### Step 1: Use the property of cube roots of unity Recall that for cube roots of unity, we have: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^3 = 1 \] ### Step 2: Simplify the determinant using row operations We can perform a row operation to simplify the determinant. Specifically, we can replace the first row with the sum of all three rows: \[ R_1 \rightarrow R_1 + R_2 + R_3 \] This gives us: \[ D = \begin{vmatrix} (x + 1) + \omega + \omega^2 & \omega + (x + \omega^2) + 1 & \omega^2 + 1 + (x + \omega) \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 3: Substitute the sum of cube roots of unity Using \(1 + \omega + \omega^2 = 0\), we can simplify the first row: \[ R_1 = (x + 1 - 1) & (x + 1) & (x + 1) \] Thus, we have: \[ D = \begin{vmatrix} x & x + 1 & x + 1 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 4: Factor out common terms Now, we can factor out \(x + 1\) from the first row: \[ D = (x + 1) \begin{vmatrix} 1 & 1 & 1 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 5: Calculate the determinant of the 3x3 matrix Now we can calculate the determinant of the remaining 3x3 matrix. We can expand this determinant using the first row: \[ D = (x + 1) \left( 1 \cdot \begin{vmatrix} x + \omega^2 & 1 \\ 1 & x + \omega \end{vmatrix} - 1 \cdot \begin{vmatrix} \omega & 1 \\ \omega^2 & x + \omega \end{vmatrix} + 1 \cdot \begin{vmatrix} \omega & x + \omega^2 \\ \omega^2 & 1 \end{vmatrix} \right) \] ### Step 6: Calculate the 2x2 determinants Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} x + \omega^2 & 1 \\ 1 & x + \omega \end{vmatrix} = (x + \omega^2)(x + \omega) - 1\) 2. \(\begin{vmatrix} \omega & 1 \\ \omega^2 & x + \omega \end{vmatrix} = \omega(x + \omega) - \omega^2\) 3. \(\begin{vmatrix} \omega & x + \omega^2 \\ \omega^2 & 1 \end{vmatrix} = \omega - \omega^2(x + \omega^2)\) ### Step 7: Combine results Combining these results will yield a polynomial in \(x\). After simplification, we will find that: \[ D = x^3 + 1 \] ### Final Result Thus, the value of the determinant is: \[ D = x^3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega,omega^2 are the cube roots of unity , then Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|