Home
Class 12
MATHS
If Delta1=|(1,0),(a,b)| and Delta2=|(1,0...

If `Delta_1=|(1,0),(a,b)|` and `Delta_2=|(1,0),(c,d)|`, then `Delta_2Delta_1` is equal to :

A

ac

B

bd

C

(b-a)(d-c)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the product of two determinants, \( \Delta_1 \) and \( \Delta_2 \). ### Step-by-Step Solution: 1. **Define the Determinants:** \[ \Delta_1 = \begin{vmatrix} 1 & 0 \\ a & b \end{vmatrix} \] \[ \Delta_2 = \begin{vmatrix} 1 & 0 \\ c & d \end{vmatrix} \] 2. **Calculate \( \Delta_1 \):** The formula for a 2x2 determinant is given by: \[ \begin{vmatrix} p & q \\ r & s \end{vmatrix} = ps - qr \] Applying this to \( \Delta_1 \): \[ \Delta_1 = (1 \cdot b) - (0 \cdot a) = b - 0 = b \] 3. **Calculate \( \Delta_2 \):** Similarly, we calculate \( \Delta_2 \): \[ \Delta_2 = (1 \cdot d) - (0 \cdot c) = d - 0 = d \] 4. **Find the Product \( \Delta_2 \Delta_1 \):** Now, we multiply the two determinants: \[ \Delta_2 \Delta_1 = d \cdot b = bd \] 5. **Final Result:** Therefore, the product \( \Delta_2 \Delta_1 \) is: \[ \Delta_2 \Delta_1 = bd \] ### Conclusion: The answer to the problem is \( bd \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta_(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then Delta_(1)-Delta_(2) equual

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

If Delta_1=|{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}| and Delta_2=|{:(1,bc,a),(1,ac,b),(1,ab,c):}| then : -

If Delta_1=|1 1 1a b c a^2b^2c^2|,Delta_2=|1b c a1c a b1a b c|,t h e n Delta_1+Delta_2=0 (b) Delta_1+2Delta_2=0 Delta_1=Delta_2 (d) none of these

Suppose a,b, c epsilon R on abc!=0 . Let Delta=|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)| If Delta=0 , then 1/a+1/b+1/c is equal to