Home
Class 12
MATHS
If matrix A=[(0,-1),(1,0)], then A^16 =...

If matrix `A=[(0,-1),(1,0)]`, then `A^16` =

A

`[(0,-1),(1,0)]`

B

`[(0,1),(1,0)]`

C

`[(-1,0),(0,1)]`

D

`[(1,0),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{16} \) for the matrix \[ A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \] we can follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} (0 \cdot 0 + -1 \cdot 1) & (0 \cdot -1 + -1 \cdot 0) \\ (1 \cdot 0 + 0 \cdot 1) & (1 \cdot -1 + 0 \cdot 0) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Thus, \[ A^2 = -I \] where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^4 \) Now, we can find \( A^4 \): \[ A^4 = (A^2)^2 = (-I)^2 \] Since \( (-I)^2 = I \): \[ A^4 = I \] ### Step 3: Calculate \( A^{16} \) Next, we can find \( A^{16} \): \[ A^{16} = (A^4)^4 = I^4 \] Since the identity matrix raised to any power is still the identity matrix: \[ I^4 = I \] ### Final Result Thus, \[ A^{16} = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Summary The final answer is: \[ A^{16} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The matrix A= [[0,1],[1,0]] is

the matrix [(0,1),(1,0)] is the matrix reflection in the line

Consider the matrix B= [[0,-1],[1,0]] ,then B^(1027)

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

If A = [{:(0,1),(1,0):}] , then the matrix A is/an

If A=[{:(0,1),(1,0):}] then the matrix A is

Show that the matrix, A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew - symmetric matrix.

(i) Show that the matrix A=[(1,-1,5),(-1,2,1),(5,1,3)] is a symmetric matrix. Show that the matrix A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A