Home
Class 12
MATHS
The matrix [(2,lambda,-4),(-1,3,4),(1,-2...

The matrix `[(2,lambda,-4),(-1,3,4),(1,-2,-3)]` is non singular , if :

A

`lambda ne -2`

B

`lambda ne 2 `

C

`lambda ne 3`

D

`lambda ne -3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given matrix is non-singular, we need to find the determinant of the matrix and set it not equal to zero. A matrix is non-singular if its determinant is not equal to zero. Given matrix: \[ A = \begin{pmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] ### Step 1: Calculate the Determinant We can calculate the determinant of the matrix \( A \) using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = 2, b = \lambda, c = -4 \) - \( d = -1, e = 3, f = 4 \) - \( g = 1, h = -2, i = -3 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = 2(3 \cdot (-3) - 4 \cdot (-2)) - \lambda(-1 \cdot (-3) - 4 \cdot 1) - 4(-1 \cdot (-2) - 3 \cdot 1) \] ### Step 2: Simplify the Determinant Calculating each part: 1. \( 3 \cdot (-3) = -9 \) 2. \( 4 \cdot (-2) = -8 \) 3. Therefore, \( 3 \cdot (-3) - 4 \cdot (-2) = -9 + 8 = -1 \) Now substituting back: \[ \text{det}(A) = 2(-1) - \lambda(3 - 4) - 4(2 - 3) \] Calculating: 1. \( 2(-1) = -2 \) 2. \( 3 - 4 = -1 \) 3. \( -\lambda(-1) = \lambda \) 4. \( 2 - 3 = -1 \) 5. \( -4(-1) = 4 \) Putting it all together: \[ \text{det}(A) = -2 + \lambda + 4 = \lambda + 2 \] ### Step 3: Set the Determinant Not Equal to Zero For the matrix to be non-singular, we need: \[ \lambda + 2 \neq 0 \] This implies: \[ \lambda \neq -2 \] ### Conclusion The matrix is non-singular if \( \lambda \) is not equal to -2.
Promotional Banner

Similar Questions

Explore conceptually related problems

The matrix A = [{:(2 , -2, -4),(- 1, 3, 4),(1 , - 2, -3):}] is

Assertion (A) : If the matrix A=[{:(1,3,lambda+2),(2,4,8),(3,5,10):}] is singular , then lambda=4 . Reason (R ) : If A is a singular matrix, then |A|=0

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda

The number of values of x for which the matrix A=[(3-x,2,2),(2,4-x,1),(-2,-4,-1-x)] is singular, is

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

The value of lambda for which the matrix [(1,-2,-1),(2,lambda,3),(-1,0,3)] will not be invertible ,