Home
Class 12
MATHS
If 1,omega , omega^2 are the cube roots...

If `1,omega , omega^2` are the cube roots of unity , then `Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)|` is equal to :

A

0

B

1

C

`omega`

D

`omega^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} \), where \( 1, \omega, \omega^2 \) are the cube roots of unity, we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} \] ### Step 2: Expand the Determinant We can expand this determinant using the first row: \[ \Delta = 1 \cdot \begin{vmatrix} \omega^{2n} & 1 \\ 1 & \omega^n \end{vmatrix} - \omega^n \cdot \begin{vmatrix} \omega^n & 1 \\ \omega^{2n} & \omega^n \end{vmatrix} + \omega^{2n} \cdot \begin{vmatrix} \omega^n & \omega^{2n} \\ \omega^{2n} & 1 \end{vmatrix} \] ### Step 3: Calculate Each 2x2 Determinant 1. The first determinant: \[ \begin{vmatrix} \omega^{2n} & 1 \\ 1 & \omega^n \end{vmatrix} = \omega^{2n} \cdot \omega^n - 1 \cdot 1 = \omega^{3n} - 1 \] 2. The second determinant: \[ \begin{vmatrix} \omega^n & 1 \\ \omega^{2n} & \omega^n \end{vmatrix} = \omega^n \cdot \omega^n - 1 \cdot \omega^{2n} = \omega^{2n} - \omega^{2n} = 0 \] 3. The third determinant: \[ \begin{vmatrix} \omega^n & \omega^{2n} \\ \omega^{2n} & 1 \end{vmatrix} = \omega^n \cdot 1 - \omega^{2n} \cdot \omega^{2n} = \omega^n - \omega^{4n} \] ### Step 4: Substitute Back into the Determinant Now substituting back into the expression for \( \Delta \): \[ \Delta = 1 \cdot (\omega^{3n} - 1) - \omega^n \cdot 0 + \omega^{2n} \cdot (\omega^n - \omega^{4n}) \] This simplifies to: \[ \Delta = \omega^{3n} - 1 + \omega^{2n}(\omega^n - \omega^{4n}) = \omega^{3n} - 1 + \omega^{3n} - \omega^{6n} \] ### Step 5: Combine Like Terms Combining the terms gives: \[ \Delta = 2\omega^{3n} - 1 - \omega^{6n} \] ### Step 6: Use the Property of Cube Roots of Unity Since \( \omega^3 = 1 \), we have \( \omega^{3n} = 1 \) and \( \omega^{6n} = 1 \): \[ \Delta = 2 \cdot 1 - 1 - 1 = 2 - 1 - 1 = 0 \] ### Final Answer Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =