Home
Class 12
MATHS
If D=diag(d1,d2,d3,…,dn)" where "d ne 0"...

If `D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1)`is equal to

A

0

B

`I_n`

C

diagonal `(d_1^(-1), d_2^(-1),….d_n^(-1))`

D

None of above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If D=diag [2, 3, 4] , then D^(-1)=

Find the inverse of each of the matrices given below : Let D= "diag" [d_(1),d_(2),d_(3)] where none of d_(1),d_(2),d_(3) is ), prove that D^(-1)="diag" [d_(1)^(-1),d_(2)^(-1),d_(3)^(-1)] .

If A^(20) = [(a,b),(c,d)] where A =[(1,1),(0,2)] then a+b+c+d is equal to

Statement 1: if D=diag[d_(1),d_(2),,d_(n)], then D^(-1)=diag[d_(1)^(-1),d_(2)^(-1),...,d_(n)^(-1)] Statement 2: if D=diag[d_(1),d_(2),,d_(n)], then D^(n)=diag[d_(1)^(n),d_(2)^(n),...,d_(n)^(n)]

If D=diag[d_(1),d_(2),...d_(n)], then prove that f(D)=diag[f(d_(1)),f(d_(2)),...,f(d_(n))], where f(x) is a polynomial with scalar coefficient.