Home
Class 12
MATHS
Consider the determinant, Delta=|(p,q,r)...

Consider the determinant, `Delta=|(p,q,r),(x,y,z),(l,m,n)|` .
`M_(ij)` denotes the minor of an element in `i^(th)` row, and `j^(th)` column
`C_(ij)` denotes the cofactor of an element in `i^(th)` row and `j^(th)` column
The value of `x.C_21+y.C_22+z.C_23` is :

A

0

B

`-Delta`

C

`Delta`

D

`Delta^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23} \) for the determinant \( \Delta = \begin{vmatrix} p & q & r \\ x & y & z \\ l & m & n \end{vmatrix} \). ### Step 1: Calculate the Determinant We start by calculating the determinant \( \Delta \) using the first row: \[ \Delta = p \begin{vmatrix} y & z \\ m & n \end{vmatrix} - q \begin{vmatrix} x & z \\ l & n \end{vmatrix} + r \begin{vmatrix} x & y \\ l & m \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} y & z \\ m & n \end{vmatrix} = yn - mz \) 2. \( \begin{vmatrix} x & z \\ l & n \end{vmatrix} = xn - lz \) 3. \( \begin{vmatrix} x & y \\ l & m \end{vmatrix} = xm - ly \) So, substituting these back into the determinant: \[ \Delta = p(yn - mz) - q(xn - lz) + r(xm - ly) \] ### Step 2: Calculate the Cofactors Next, we need to find the cofactors \( C_{21} \), \( C_{22} \), and \( C_{23} \). The cofactor \( C_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} M_{ij} \] where \( M_{ij} \) is the minor of the element in the \( i^{th} \) row and \( j^{th} \) column. 1. **Cofactor \( C_{21} \)**: - Minor \( M_{21} \) is obtained by deleting the 2nd row and 1st column: \[ M_{21} = \begin{vmatrix} q & r \\ m & n \end{vmatrix} = qn - rm \] - Thus, \( C_{21} = (-1)^{2+1} M_{21} = -(qn - rm) = rm - qn \). 2. **Cofactor \( C_{22} \)**: - Minor \( M_{22} \) is obtained by deleting the 2nd row and 2nd column: \[ M_{22} = \begin{vmatrix} p & r \\ l & n \end{vmatrix} = pn - lr \] - Thus, \( C_{22} = (-1)^{2+2} M_{22} = pn - lr \). 3. **Cofactor \( C_{23} \)**: - Minor \( M_{23} \) is obtained by deleting the 2nd row and 3rd column: \[ M_{23} = \begin{vmatrix} p & q \\ l & m \end{vmatrix} = pm - ql \] - Thus, \( C_{23} = (-1)^{2+3} M_{23} = -(pm - ql) = ql - pm \). ### Step 3: Substitute Cofactors into the Expression Now we substitute the cofactors back into the expression \( x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23} \): \[ x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23} = x(rm - qn) + y(pn - lr) + z(ql - pm) \] Expanding this: \[ = xrm - xqn + ypn - ylr + zql - zpm \] ### Step 4: Combine Like Terms Rearranging the terms gives: \[ = (xrm - zpm) + (ypn - ylr) + (zql - xqn) \] ### Final Result Thus, we can express the final result as: \[ = \Delta \] where \( \Delta \) is the determinant we calculated initially. ### Conclusion The value of \( x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23} \) is equal to the determinant \( \Delta \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M_(ij) denotes the minor of an element in i^(th) row, and j^(th) column C_(ij) denotes the cofactor of an element in i^(th) row and j^(th) column The value of p.C_21+q.C_22+r.C_23 is :

Consider the determinant, Delta=|(p,q,r),(x,y,z),(l,m,n)| . M_(ij) denotes the minor of an element in i^(th) row, and j^(th) column C_(ij) denotes the cofactor of an element in i^(th) row and j^(th) column the value of q.M_12 - y.M_22+ m.M_32 is :

Cofactor of an element in the i^(th) row and j^(th) column =

The cofactor of an element in the i^(th) row and the j^(th) column of a 3times3 matrix is defined

If in the determinant |(x,3,3),(3,3,x),(2,3,3)|, C_(11)=C_(22) where C_(ij) is cofactor of element a_(ij) then x=

The element in the i^(th) row and the j^(th) column of a determinant of third order is equal to 2(i+j) . What is the value of the determinant?

In a third order matrix A, a_(ij) denotes the element in the i^(th) row and j^(th) column. If a_(ij) = {{:(0,"for I"= j),(1,"for I" gt j),(-1,"for I"lt j):} then the matrix is

A is a matrix of 3xx3 and a_(ij) is its elements of i^(th) row and j^(th) column. If a_(ij)+a_(jk)+a_(ki)=0 holds for all 1 le i, j, kle 3 then

If C_(ij) denotes the cofactor of the elements a_(ij) of the determinant A=|{:(2,-3,5),(6,0,4),(1,5,-7):}| then the value of a_(12)C_(12)+a_(32)C_(32) is :