Home
Class 12
MATHS
Consider a system of linear equation in ...

Consider a system of linear equation in three variables x,y,z
`a_1x+b_1y+ c_1z = d_1 , a_2x+ b_2y+c_2z=d_2 , a_3x + b_3y + c_3z=d_3`
The systems can be expressed by matrix equation `[(a_1,b_1,c_1),(a_2,b_2,c_2),(c_1,c_2,c_3)][(x),(y),(z)]=[(d_1),(d_2),(d_3)]`
if A is non-singular matrix then the solution of above system can be found by X =`A^(-1)B`, the solution in this case is unique.
if A is a singular matrix i.e. then the system will have
no solution (i.e. it is inconsistent) if
Where Adj A is the adjoint of the matrix A, which is obtained by taking transpose of the matrix obtained by replacing each element of matrix A with corresponding cofactors.
Now consider the following matrix.
`A=[(a,1,0),(1,b,d),(1,b,c)], B=[(a,1,1),(0,d,c),(f,g,h)], U=[(f),(g),(h)], V=[(a^2),(0),(0)], X=[(x),(y),(z)]`
The system AX=U has infinitely many solutions if :

A

c=d, ab=1

B

c=d,h=g

C

ab=1,h=g

D

c=d,h=g,ab=1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the system of linear equations a_(1)x+b_(1)y+ c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+ c_(2)z+d_(2)= 0 , a_(3)x+b_(3)y +c_(3)z+d_(3)=0 , Let us denote by Delta (a,b,c) the determinant |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}| , if Delta (a,b,c) # 0, then the value of x in the unique solution of the above equations is

Consider the system of linear equations , a_(1)x+b_(1)y+c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+c_(2)z+d_(2)=0 , a_(3)x+b_(3)y+c_(3)2+d_(3)=0 Let us denote by Delta(a,b,c) the determinant |[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(2),c_(3)]| if Delta(a,b,c)!=0, then the value of x in the unique solution of the above equations is

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

For two linear equations , a_1x + b_1y + c_1=0 and a_2x + b_2y + c_2 = 0 , the condition (a_1)/(a_2)=(b_1)/(b_2)=(c_1)/(c_2) is for.

Solve the following system of linear equations by Cramers rule: x+y+z+1=0,\ \ a x+b y+c z+d=0,\ \ a^2x+b^2y+c^2z+d^2=0