Home
Class 12
MATHS
The inverse of [(3,5,7),(2,-3,1),(1,1,2)...

The inverse of `[(3,5,7),(2,-3,1),(1,1,2)]` is :

A

`[(7,3,-26),(3,1,-11),(-5,-2,0)]`

B

`[(7,3,-26),(3,1,11),(-5,-2,1)]`

C

`[(3,1,11),(7,3,-26),(-5,2,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix} \), we will follow the steps outlined below: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3((-3)(2) - (1)(1)) - 5((2)(2) - (1)(1)) + 7((2)(1) - (-3)(1)) \] Calculating each term: 1. \( -3 \cdot 2 - 1 \cdot 1 = -6 - 1 = -7 \) 2. \( 2 \cdot 2 - 1 \cdot 1 = 4 - 1 = 3 \) 3. \( 2 \cdot 1 - (-3) \cdot 1 = 2 + 3 = 5 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 3(-7) - 5(3) + 7(5) \] \[ = -21 - 15 + 35 = -1 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor for each element in \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{pmatrix} -3 & 1 \\ 1 & 2 \end{pmatrix} = (-3)(2) - (1)(1) = -6 - 1 = -7 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = -((2)(2) - (1)(1)) = -(4 - 1) = -3 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = (2)(1) - (-3)(1) = 2 + 3 = 5 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{pmatrix} 5 & 7 \\ 1 & 2 \end{pmatrix} = -((5)(2) - (7)(1)) = -(10 - 7) = -3 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix} = (3)(2) - (7)(1) = 6 - 7 = -1 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{pmatrix} 3 & 5 \\ 1 & 1 \end{pmatrix} = -((3)(1) - (5)(1)) = -(3 - 5) = 2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{pmatrix} 5 & 7 \\ -3 & 1 \end{pmatrix} = (5)(1) - (7)(-3) = 5 + 21 = 26 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{pmatrix} 3 & 7 \\ 2 & 1 \end{pmatrix} = -((3)(1) - (7)(2)) = -(3 - 14) = 11 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{pmatrix} 3 & 5 \\ 2 & -3 \end{pmatrix} = (3)(-3) - (5)(2) = -9 - 10 = -19 \] Now, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -7 & -3 & 5 \\ -3 & -1 & 2 \\ 26 & 11 & -19 \end{pmatrix} \] Taking the transpose to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 2 & -19 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-1} \cdot \begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 2 & -19 \end{pmatrix} \] \[ = \begin{pmatrix} 7 & 3 & -26 \\ 3 & 1 & -11 \\ -5 & -2 & 19 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 7 & 3 & -26 \\ 3 & 1 & -11 \\ -5 & -2 & 19 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of [(1,2),(2,3)] is

The inverse of [(1,2,4),(3,-19,7),(2,4,8)] is

Find the inverse of matrix B=[{:(3,1,5),(2,7,8),(1,2,5):}] by using adjoint method.

Find the inverse of {:((3,2,6),(1,1,2),(2,2,5)):} by the adjoint method .

The inverse of the matrix [(2,3),(-4,7)] is (A) [(-2,-3),(4,-7)] (B) 1/26 [(7,-3),(4,2)] (C) [(7,4),(-3,2)] (D) [(7,-3),(4,2)]

Find the inverse of matrix [{:(2,5),(-3,1):}]

By using elementary transformations, find the inverse of : A=[(3,1),(5,2)] .

The additive inverse of [{:(-1, 3, 4), (5, -7, 8):}] is ____.