Home
Class 12
MATHS
Let A=[(1,0),(1,1)] . Then which of th...

Let `A=[(1,0),(1,1)]` . Then which of the following is not true ?

A

`lim_(n to oo)1/n^2 A^(-n) =[(0,0),(-1,0)]`

B

`lim_(n to oo)1/nA^(-n)=[(0,0),(-1,0)]`

C

`A^(-n)=[(1,0),(-n,1)]AA n ne N`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) and its properties, particularly focusing on the inverse and powers of the matrix. Given: \[ A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 1: Find the Determinant of \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (1)(1) - (0)(1) = 1 \] ### Step 2: Find the Adjoint of \( A \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \] ### Step 3: Find the Inverse of \( A \) The inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{adj}(A) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \] ### Step 4: Find \( A^{-n} \) To find \( A^{-n} \), we can observe the pattern. We already have: \[ A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \] Calculating \( A^{-2} \): \[ A^{-2} = A^{-1} \cdot A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \] Calculating this product: - First row, first column: \( 1 \cdot 1 + 0 \cdot -1 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( -1 \cdot 1 + 1 \cdot -1 = -2 \) - Second row, second column: \( -1 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^{-2} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \] Continuing this pattern, we can deduce: \[ A^{-n} = \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix} \] ### Step 5: Analyze the Given Options 1. **Option A**: \( \lim_{n \to \infty} \frac{1}{n^2} A^{-n} \) \[ = \lim_{n \to \infty} \frac{1}{n^2} \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This is true. 2. **Option B**: \( \lim_{n \to \infty} \frac{1}{n} A^{-n} \) \[ = \lim_{n \to \infty} \frac{1}{n} \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \] This is true. 3. **Option C**: The value of \( A^{-n} \) is given as \( \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix} \), which we have derived. This is true. ### Conclusion The only option that is not true is **Option A**, as it leads to a misunderstanding of the limit behavior. ### Final Answer The option that is not true is **Option A**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is not true log(1+x) 0

Let A=[[1,01,1]]. Then which of following is not true? lim_(n rarr oo)(1)/(n^(2))A^(-n)=[[0,0-1,0]] b.lim_(n rarr oo)(1)/(n)A^(-n)=[[0,0-1,0]]A^(-n)=[[1,0-n,1]]AA n!=N d.none of these

By LMVT,which of the following is true for x>1

Let N=(10^(143)-1)/(9) Then which of the following is true?

Which of the following is true? tan 1>tan^(-1)1

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f(x)=(1)/(1-x), then which of the following is not true?