Home
Class 12
MATHS
A=[1t a n x-t a n x1]a n df(x) is define...

`A=[1t a n x-t a n x1]a n df(x)` is defined as `f(x)=d e tdot(A^T A^(-1))` en the value of `(f(f(f(ff(x))))_` is `(ngeq2)` _________.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,tan x-tan x,1]] and f(x) is defined as f(x)=det.(A^(T)A^(-1)) en the value of f(f(f(f...f(x))) is (n>=2)

If A=[[1,tan x-tan x,1]] then let us define a function f(x)=det(A^(T)A^(-1)) then which of the following can be the value f(f(f(f.....f(x))))

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=x^(n)&f'(1)=10, find the value of n.

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is