Home
Class 12
MATHS
If |((beta+gamma-alpha -delta)^4 , (beta...

If `|((beta+gamma-alpha -delta)^4 , (beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4, (gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4, (alpha + beta-gamma-delta)^2,1)|=-k(alpha -beta)(alpha -gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)`, then the value of `(k)^(1//2)` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we will follow the steps outlined in the video transcript to arrive at the value of \( (k)^{1/2} \). ### Step-by-Step Solution: 1. **Define Variables**: Let: \[ x = \beta + \gamma - \alpha - \delta \] \[ y = \gamma + \alpha - \beta - \delta \] \[ z = \alpha + \beta - \gamma - \delta \] 2. **Set Up the Determinant**: The determinant can be written as: \[ \begin{vmatrix} x^4 & x^2 & 1 \\ y^4 & y^2 & 1 \\ z^4 & z^2 & 1 \end{vmatrix} \] 3. **Row Operations**: Perform row operations to simplify the determinant: - Subtract \( R_3 \) from \( R_1 \) and \( R_2 \): \[ R_1 \rightarrow R_1 - R_3 \] \[ R_2 \rightarrow R_2 - R_3 \] 4. **Factor Out Common Terms**: After performing the row operations, factor out common terms: \[ (x^2 - z^2) \quad \text{from } R_1 \] \[ (y^2 - z^2) \quad \text{from } R_2 \] 5. **Rewrite the Determinant**: The determinant now looks like: \[ (x^2 - z^2)(y^2 - z^2) \begin{vmatrix} x^2 + z^2 & 1 & 0 \\ y^2 + z^2 & 1 & 0 \\ z^4 & z^2 & 1 \end{vmatrix} \] 6. **Expand the Determinant**: Expand the determinant along the third column: \[ = (x^2 - z^2)(y^2 - z^2) \cdot (x^2 - y^2) \] 7. **Calculate the Products**: The product of the differences results in: \[ (x^2 - z^2)(y^2 - z^2)(x^2 - y^2) \] 8. **Substitute Back**: Substitute back the values of \( x, y, z \) to express in terms of \( \alpha, \beta, \gamma, \delta \): \[ k = 64 \] 9. **Find \( (k)^{1/2} \)**: Finally, compute: \[ (k)^{1/2} = (64)^{1/2} = 8 \] ### Final Answer: The value of \( (k)^{1/2} \) is \( 8 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)

If =(beta-gamma)(alpha-delta),y=(gamma-alpha)(beta-delta),z=(alpha-beta)(gamma-delta) ,then value of x^(3)+y^(3)+z^(3)-3xyz is

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

Prove that |{:(2,alpha+beta+gamma+delta,alphabeta +gammadelta),(alpha+beta+gamma+delta,2(alpha+beta)(gamma+delta),alphabeta(gamma+delta)+gammadelta(alpha+beta)),(alphabeta+gammadelta,alphabeta(gamma+delta)+gammadelta(alpha+beta),2alphabetagamma delta):}| =0

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha)*sin(beta-delta) , then :

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadeltaalpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta)alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

If alpha,beta are the roots of x^(2)+ax-b=0 and gamma,delta are the roots of x^(2)+ax+b=0 then (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)=

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta) prove that cot alpha cot beta cot gamma=cot delta