Home
Class 12
MATHS
Let phi1(x)=x+a2, phi2(x)=x^2+b1x+b2, x1...

Let `phi_1(x)=x+a_2, phi_2(x)=x^2+b_1x+b_2, x_1=2,x_2=3` and `x_3=5` and `Delta=|(1,1,1),( phi_1(x_1), phi_1(x_2), phi_1(x_3)),(phi_2(x_1),phi_2(x_2),phi_2(x_3))|` . Find the value of `Delta`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \Delta \), we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ \phi_1(x_1) & \phi_1(x_2) & \phi_1(x_3) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(x_3) \end{vmatrix} \] where \( \phi_1(x) = x + a_2 \) and \( \phi_2(x) = x^2 + b_1 x + b_2 \), with \( x_1 = 2 \), \( x_2 = 3 \), and \( x_3 = 5 \). ### Step 1: Calculate \( \phi_1(x) \) values First, we calculate \( \phi_1(x_1) \), \( \phi_1(x_2) \), and \( \phi_1(x_3) \): - \( \phi_1(x_1) = \phi_1(2) = 2 + a_2 = 2 + a_2 \) - \( \phi_1(x_2) = \phi_1(3) = 3 + a_2 = 3 + a_2 \) - \( \phi_1(x_3) = \phi_1(5) = 5 + a_2 = 5 + a_2 \) ### Step 2: Calculate \( \phi_2(x) \) values Next, we calculate \( \phi_2(x_1) \), \( \phi_2(x_2) \), and \( \phi_2(x_3) \): - \( \phi_2(x_1) = \phi_2(2) = 2^2 + b_1 \cdot 2 + b_2 = 4 + 2b_1 + b_2 \) - \( \phi_2(x_2) = \phi_2(3) = 3^2 + b_1 \cdot 3 + b_2 = 9 + 3b_1 + b_2 \) - \( \phi_2(x_3) = \phi_2(5) = 5^2 + b_1 \cdot 5 + b_2 = 25 + 5b_1 + b_2 \) ### Step 3: Substitute values into the determinant Now we substitute these values into the determinant: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 + a_2 & 3 + a_2 & 5 + a_2 \\ 4 + 2b_1 + b_2 & 9 + 3b_1 + b_2 & 25 + 5b_1 + b_2 \end{vmatrix} \] ### Step 4: Simplify the determinant We can simplify this determinant by performing column operations. Let's subtract the first column from the second and the third columns: \[ \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 2 + a_2 & 1 & 3 \\ 4 + 2b_1 + b_2 & 5 + b_1 & 21 + 3b_1 \end{vmatrix} \] ### Step 5: Calculate the determinant Now we can expand the determinant along the first row: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & 3 \\ 5 + b_1 & 21 + 3b_1 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = 1 \cdot (1 \cdot (21 + 3b_1) - 3 \cdot (5 + b_1)) \] \[ = 21 + 3b_1 - 15 - 3b_1 = 6 \] Thus, the value of \( \Delta \) is: \[ \Delta = 6 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let phi_(1)(x)=x+a_(1),phi_(2)(x)=x^(2)+b_(1)x+b_(2) and Delta=|(1,1,1),(phi_(1)(x_(1)),phi_(1)(x_(2)),phi_(1)(x_(3))),(phi_(2)(x_(1)),phi_(2)(x_(2)),phi_(2)(x_(3)))| , then

(Cos^(2)phi+(1)/(cosec^(2)phi))+17=x . What is the value of x^(2) ?

(Cos^(2)phi+(1)/(cosec^(2)phi))+17=x . What is the value of x^(2) ?

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

If and phi(x)=(1)/(1+e^(-x))S=phi(5)+phi(4)+phi(3)+...+phi(-3)+phi(-4)+phi(-5) then the value of S is

If x(x^(4)+1)phi(x)=1 , then int_(1)^(2)phi(x)dx=

If phi(x)=phi'(x) and phi(1)=2, then phi(3) equals

If phi(x)=int(phi(x))^(-2)dx and phi(1)=0 then phi(x) is

If f(x)=x^(3)-x and phi (x)= sin 2x , then