Home
Class 12
MATHS
Let ar=r(.^7Cr),br=(7-r)(.^7Cr) and Ar=...

Let `a_r=r(.^7C_r),b_r=(7-r)(.^7C_r)` and `A_r=[(a_r,0),(0,b_r)]`. If `A=sum_(r=0)^7 A_r=[(a,0),(0,b)]`, then find the value of a+b .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the terms and then compute the required sums. ### Step 1: Define the terms We have: - \( a_r = r \cdot \binom{7}{r} \) - \( b_r = (7 - r) \cdot \binom{7}{r} \) ### Step 2: Write the matrices The matrices \( A_r \) are given as: \[ A_r = \begin{pmatrix} a_r & 0 \\ 0 & b_r \end{pmatrix} \] We need to find the sum of these matrices from \( r = 0 \) to \( r = 7 \): \[ A = \sum_{r=0}^{7} A_r = \sum_{r=0}^{7} \begin{pmatrix} a_r & 0 \\ 0 & b_r \end{pmatrix} = \begin{pmatrix} \sum_{r=0}^{7} a_r & 0 \\ 0 & \sum_{r=0}^{7} b_r \end{pmatrix} \] ### Step 3: Calculate \( a \) Now, we calculate \( a \): \[ a = \sum_{r=0}^{7} a_r = \sum_{r=0}^{7} r \cdot \binom{7}{r} \] Using the identity \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \), we can rewrite this as: \[ a = 7 \cdot \sum_{r=1}^{7} \binom{6}{r-1} = 7 \cdot \sum_{s=0}^{6} \binom{6}{s} = 7 \cdot 2^6 = 7 \cdot 64 = 448 \] ### Step 4: Calculate \( b \) Next, we calculate \( b \): \[ b = \sum_{r=0}^{7} b_r = \sum_{r=0}^{7} (7 - r) \cdot \binom{7}{r} \] This can be rewritten as: \[ b = 7 \cdot \sum_{r=0}^{7} \binom{7}{r} - \sum_{r=0}^{7} r \cdot \binom{7}{r} \] We know that \( \sum_{r=0}^{7} \binom{7}{r} = 2^7 = 128 \) and we already calculated \( \sum_{r=0}^{7} r \cdot \binom{7}{r} = 448 \). Thus, \[ b = 7 \cdot 128 - 448 = 896 - 448 = 448 \] ### Step 5: Calculate \( a + b \) Finally, we find: \[ a + b = 448 + 448 = 896 \] ### Final Answer The value of \( a + b \) is \( \boxed{896} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_r=r^4C_r,b_r=(4-r)^4C_r,A_r=[{:(a_r,2),(3,b_r):}] and A = sum _(r=0)^4A_r then the value of |A| is equal to

If A=[(1,0),(0,1)] B=sum_(r=1)^2021A^r then value of abs(B) is

Let (1 + x)^(10)=sum_(r=0)^(10)c_(r)x^(r) and (1+x)^(7)=sum_(r=0)^(7)d_(r),x^(r). If P=sum_(r=0)^(5)c_(2r) and Q=sum_(r=0)^(3)d_(2r+1) , then P/Q is equal to ______

if (1-x^3)^n=sum_(r=0)^n a_rx^r (1-x)^(3n-2r), where n epsilonN then find a_r .

If z_(r):r=1,2,3,,50 are the roots of the equation sum_(r=0)^(50)z^(r)=0, then find the value of sum_(r=0)^(50)(1)/(z_(r)-1)

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Let (1+x)^(10) = sum_(r=0)^(10) c_(r) x^ (r ) and (1+x)^(7) = sum_(r=0)^(7) d_(r) x^(r ) . If P= sum_(r=0)^(5) c_(2r) and Q= sum_(r=0)^(3) d_(2r+1), then (P)/(Q) is equal to