Home
Class 12
MATHS
Let A =[(2,3),(-1,5)] . If A^(-1)=xA+yI,...

Let A =`[(2,3),(-1,5)]` . If `A^(-1)=xA+yI`, then the value of 2y+x , is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(x\) and \(y\) such that \(A^{-1} = xA + yI\) for the matrix \(A = \begin{pmatrix} 2 & 3 \\ -1 & 5 \end{pmatrix}\). We will then calculate \(2y + x\). ### Step 1: Calculate the Inverse of Matrix A The formula for the inverse of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \(A\): - \(a = 2\), \(b = 3\), \(c = -1\), \(d = 5\) - Calculate the determinant \(ad - bc\): \[ ad - bc = (2)(5) - (3)(-1) = 10 + 3 = 13 \] Now, we can find \(A^{-1}\): \[ A^{-1} = \frac{1}{13} \begin{pmatrix} 5 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{5}{13} & -\frac{3}{13} \\ \frac{1}{13} & \frac{2}{13} \end{pmatrix} \] ### Step 2: Set Up the Equation \(A^{-1} = xA + yI\) We know that: \[ A^{-1} = xA + yI \] Where \(I\) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ yI = y \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} y & 0 \\ 0 & y \end{pmatrix} \] Now, substituting \(A\) and \(I\): \[ xA = x \begin{pmatrix} 2 & 3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 2x & 3x \\ -x & 5x \end{pmatrix} \] So we have: \[ A^{-1} = \begin{pmatrix} 2x + y & 3x \\ -x & 5x + y \end{pmatrix} \] ### Step 3: Equate the Matrices Now, we equate \(A^{-1}\) with \(xA + yI\): \[ \begin{pmatrix} \frac{5}{13} & -\frac{3}{13} \\ \frac{1}{13} & \frac{2}{13} \end{pmatrix} = \begin{pmatrix} 2x + y & 3x \\ -x & 5x + y \end{pmatrix} \] This gives us the following equations: 1. \(2x + y = \frac{5}{13}\) 2. \(3x = -\frac{3}{13}\) 3. \(-x = \frac{1}{13}\) 4. \(5x + y = \frac{2}{13}\) ### Step 4: Solve for x From equation 2: \[ 3x = -\frac{3}{13} \implies x = -\frac{1}{13} \] ### Step 5: Solve for y Substituting \(x = -\frac{1}{13}\) into equation 1: \[ 2(-\frac{1}{13}) + y = \frac{5}{13} \implies -\frac{2}{13} + y = \frac{5}{13} \] Solving for \(y\): \[ y = \frac{5}{13} + \frac{2}{13} = \frac{7}{13} \] ### Step 6: Calculate \(2y + x\) Now we can find \(2y + x\): \[ 2y + x = 2 \left(\frac{7}{13}\right) + \left(-\frac{1}{13}\right) = \frac{14}{13} - \frac{1}{13} = \frac{13}{13} = 1 \] ### Final Answer Thus, the value of \(2y + x\) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:} , then the values of x and y are

If A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI , then

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

If (y+3)/(2y+5)=sin^(2)x+2cos x+1, then the value of y lies in

Let y^(2) = ((x+5)(x-3))/(x-1) , then all the real values of x, for which y has non-zero real values , are :

Let ((x)/(2)-1,(y)/(9)+1) = (2,1) ; then the values of x and y respectively are a) 3, 5 b) 6,0 c) 5, 3 d) 0, 6