Home
Class 12
MATHS
Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^...

Let `A=[(1,0,0),(1,1,0),(1,1,1)]` and `B=A^20` . Then the sum of the elements of the first column of B is

A

211

B

251

C

231

D

210

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( B = A^{20} \) where \( A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \), and then find the sum of the elements of the first column of matrix \( B \). ### Step 1: Understand the structure of the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \] This matrix has a specific pattern that we can exploit when raising it to a power. ### Step 2: Compute \( A^2 \) To find \( A^{20} \), we will first compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \] Calculating the elements: - First row: - \( 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = 1 \) - \( 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0 \) - \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Second row: - \( 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 2 \) - \( 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1 \) - \( 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0 \) - Third row: - \( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3 \) - \( 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 2 \) - \( 1 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \] ### Step 3: Compute \( A^3 \) Next, we compute \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \] Calculating the elements: - First row: - \( 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = 1 \) - \( 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0 \) - \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Second row: - \( 2 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 3 \) - \( 2 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1 \) - \( 2 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0 \) - Third row: - \( 3 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 = 6 \) - \( 3 \cdot 0 + 2 \cdot 1 + 1 \cdot 1 = 3 \) - \( 3 \cdot 0 + 2 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 6 & 3 & 1 \end{pmatrix} \] ### Step 4: Identify the pattern From the calculations, we can observe a pattern. The first column of \( A^n \) appears to be: - First element: \( 1 \) - Second element: \( n \) - Third element: \( \frac{n(n+1)}{2} \) ### Step 5: Compute \( A^{20} \) Using the identified pattern, we can compute \( A^{20} \): \[ A^{20} = \begin{pmatrix} 1 & 0 & 0 \\ 20 & 1 & 0 \\ 210 & 20 & 1 \end{pmatrix} \] ### Step 6: Sum the elements of the first column of \( B \) Now, we need to find the sum of the elements of the first column of \( B \): \[ 1 + 20 + 210 = 231 \] Thus, the sum of the elements of the first column of \( B \) is \( \boxed{231} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [[1,0,0],[0,1,1],[1,1,1]] and B=A^20. Then the sum of the elements of the first column of B is :

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}] . Find the sum of all the value of lamda for which there exists a column vertor Xne0 such that AX=lamdaX .

If A=[[1,0,0],[0,1,0],[a,b,-1]] and A=A^(-1) then a+b=?

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is