Home
Class 12
MATHS
Let A=[(5,5alpha,alpha),(0,alpha,5alpha)...

Let `A=[(5,5alpha,alpha),(0,alpha,5alpha),(0,0,5)]`. If `|A|^2=25`, then `|alpha|` is equal to :

A

`5^2`

B

`1`

C

`1/5`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\alpha|\) given the matrix \(A\) and the condition \(|A|^2 = 25\). The matrix \(A\) is given as: \[ A = \begin{pmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 1: Calculate the determinant of matrix \(A\) To find the determinant of \(A\), we can use the formula for the determinant of a \(3 \times 3\) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \(A\): - \(a = 5\), \(b = 5\alpha\), \(c = \alpha\) - \(d = 0\), \(e = \alpha\), \(f = 5\alpha\) - \(g = 0\), \(h = 0\), \(i = 5\) Now, substituting into the determinant formula: \[ |A| = 5(\alpha \cdot 5 - 5\alpha \cdot 0) - 5\alpha(0 \cdot 5 - 5\alpha \cdot 0) + \alpha(0 \cdot 0 - 0 \cdot \alpha) \] This simplifies to: \[ |A| = 5(5\alpha) - 0 + 0 = 25\alpha \] ### Step 2: Use the condition \(|A|^2 = 25\) We are given that \(|A|^2 = 25\). Therefore: \[ (25\alpha)^2 = 25 \] This simplifies to: \[ 625\alpha^2 = 25 \] ### Step 3: Solve for \(\alpha^2\) Dividing both sides by 625: \[ \alpha^2 = \frac{25}{625} = \frac{1}{25} \] ### Step 4: Find \(|\alpha|\) Taking the square root of both sides gives: \[ |\alpha| = \sqrt{\frac{1}{25}} = \frac{1}{5} \] Thus, the final answer is: \[ |\alpha| = \frac{1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[[5,5 alpha,alpha],[0,alpha,5 alpha],[0,0,5]] .If |A^(2)|=25 ,then | alpha| equals

Let A=[[5,5 alpha,alpha0,alpha,5 alpha0,0,5]].IfA^(2)=25, then alpha

Let A=[5 5alphaalpha0alpha5alpha0 0 5]dot"I f"|A^2|=25 , then |alpha| equals (1) 5^2 (2) 1 (3) 1/5 (4) 5

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

If 5sin alpha=3(alpha+2 beta)!=0, then tan(alpha+beta) is equal to