Home
Class 12
MATHS
If A=[(a,b),(b,a0] and A^2=[(alpha, beta...

If `A=[(a,b),(b,a0] and A^2=[(alpha, beta0,(beta, alpha)]` then (A) `alpha=a^2+b^2, beta=ab` (B) `alpha=a^2+b^2, beta=2ab` (C) `alpha=a^2+b^2, beta=a^2-b^2` (D) `alpha=2ab, beta=a^2+b^2`

A

`alpha=a^2+b^2` and `beta=ab`

B

`alpha = a^2+b^2` and `beta=2ab`

C

`alpha=a^2+b^2` and `beta=a^2-b^2`

D

`alpha=2ab` and `beta=a^2+b^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

If tan alpha=(1-cos beta)/(sin beta), then a )tan3 alpha=tan2 beta(b)tan2 alpha=tan beta(c)tan2 beta=tan alpha(d) none of these

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta) then (a) tan alpha=2tan beta(b)tan beta=2tan alpha(c)2tan alpha=3tan beta(d)3tan alpha=2tan beta

A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] and abs(2A)^3=2^21 then find alpha (alpha, beta inI^+)

If cot(alpha+beta)=0, then sin(alpha+2 beta) can be (a)-sin alpha(b)sin beta(c)cos alpha(d)cos beta

If alpha,beta are non-real roots of ax^(2)+bx+c=0,(a,b,c in R), then (A)alpha beta=1(B)alpha=beta(C)(a beta)/(alpha beta)=1(D)alpha=bar(beta)

If a tan alpha+b tan beta=(a+b)tan((alpha+beta)/(2)) where alpha!=beta ,prove that a cos beta=b cos alpha