Home
Class 12
MATHS
If 1,omega,omega^2 are the cube roots ...

If `1,omega,omega^2` are the cube roots of unity , then `Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)|` is equal to :

A

0

B

1

C

`omega`

D

`omega^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} \), where \( 1, \omega, \omega^2 \) are the cube roots of unity, we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} \] ### Step 2: Expand the determinant Using the formula for the determinant of a 3x3 matrix, we can expand it as follows: \[ \Delta = 1 \cdot \begin{vmatrix} \omega^{2n} & 1 \\ 1 & \omega^n \end{vmatrix} - \omega^n \cdot \begin{vmatrix} \omega^n & 1 \\ \omega^{2n} & \omega^n \end{vmatrix} + \omega^{2n} \cdot \begin{vmatrix} \omega^n & \omega^{2n} \\ \omega^{2n} & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we calculate each of the 2x2 determinants: 1. \( \begin{vmatrix} \omega^{2n} & 1 \\ 1 & \omega^n \end{vmatrix} = \omega^{2n} \cdot \omega^n - 1 \cdot 1 = \omega^{3n} - 1 \) 2. \( \begin{vmatrix} \omega^n & 1 \\ \omega^{2n} & \omega^n \end{vmatrix} = \omega^n \cdot \omega^n - 1 \cdot \omega^{2n} = \omega^{2n} - \omega^{2n} = 0 \) 3. \( \begin{vmatrix} \omega^n & \omega^{2n} \\ \omega^{2n} & 1 \end{vmatrix} = \omega^n \cdot 1 - \omega^{2n} \cdot \omega^{2n} = \omega^n - \omega^{4n} \) ### Step 4: Substitute back into the determinant Now substituting back into the expression for \( \Delta \): \[ \Delta = 1 \cdot (\omega^{3n} - 1) - \omega^n \cdot 0 + \omega^{2n} \cdot (\omega^n - \omega^{4n}) \] This simplifies to: \[ \Delta = \omega^{3n} - 1 + \omega^{2n} \cdot \omega^n - \omega^{2n} \cdot \omega^{4n} \] ### Step 5: Combine terms We know that \( \omega^{3n} = 1 \) (since \( \omega^3 = 1 \)), so: \[ \Delta = 1 - 1 + \omega^{3n} - \omega^{6n} = 0 - \omega^{6n} \] ### Step 6: Simplify further Since \( \omega^{6n} = (\omega^3)^{2n} = 1^{2n} = 1 \): \[ \Delta = 0 - 1 = -1 \] ### Final Result Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)