Home
Class 12
MATHS
The determinant |(xp+y, x, y),(yp+z, y ,...

The determinant `|(xp+y, x, y),(yp+z, y , z),(0, xp+y , yp+z)|=0` , if

A

x,y,z are in AP

B

x , y , z are in GP

C

x,y,z are in HP

D

xy,yz,zx are in AP

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given by \[ \begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0, \] we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant using row operations. Let's perform the operation \( R_3 \leftarrow R_3 - R_2 \): \[ D = \begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 - (yp + z) & (xp + y - y) & (yp + z - z) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ -(yp + z) & xp & yp \end{vmatrix} \] ### Step 3: Expand the Determinant Now we can expand the determinant along the third row: \[ D = -(-(yp + z)) \begin{vmatrix} x & y \\ y & z \end{vmatrix} + 0 + 0 \] Calculating the 2x2 determinant: \[ \begin{vmatrix} x & y \\ y & z \end{vmatrix} = xz - y^2 \] Thus, we have: \[ D = (yp + z)(xz - y^2) \] ### Step 4: Set the Determinant to Zero For the determinant to be zero, we set: \[ (yp + z)(xz - y^2) = 0 \] This gives us two cases to consider: 1. \( yp + z = 0 \) 2. \( xz - y^2 = 0 \) ### Step 5: Solve the Second Case From the second case, we have: \[ xz = y^2 \] This can be rearranged as: \[ \frac{x}{y} = \frac{y}{z} \] This indicates that \( x, y, z \) are in geometric progression (GP). ### Conclusion Thus, the determinant \( |(xp+y, x, y),(yp+z, y , z),(0, xp+y , yp+z)|=0 \) if \( x, y, z \) are in GP.
Promotional Banner

Similar Questions

Explore conceptually related problems

det [[xp + y, x, yyp + z, y, z0, xp + y, yp + z]] = 0 if

The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,y,z)| , is

The determinant |xp+yxyyp+zyz0xp+yyp+z|=0 if x,y,z

Determinant (x-y)(y-z)(z-x)(x+y+z)

Determinant form of (x-y)(y-z)(z-x)

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

What is the determinant of the matrix ({:(x,y,y+z),(z,x,z+x),(y,z,x+y):}) ?

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) Whgat is the value D(1, 2, C(0, 1, 2)) ?