Home
Class 12
MATHS
Let M be a 3xx3 matrix satisfying M[{:(0...

Let M be a `3xx3` matrix satisfying `M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}],M[{:(1),(-1),(0):}]=[{:(1),(1),(1):}]=[{:(0),(0),(12):}]` then the sum of the diagonal entries of M is

Text Solution

Verified by Experts

The correct Answer is:
9
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(0,1,2),(1,2,3),(3,1,1)] , then the sum of the all the diagonal entries of A^(-1) is

Let M be a 3xx3 matrix satisfying M |{:(,0),(,1),(,0):}|=|{:(,-1),(,2),(,3):}|, M|{:(,1),(,-1),(,0):}|=|{:(,1),(,1),(,-1):}| and and M|{:(,1),(,1),(,1):}|= |{:(,0),(,0),(,12):}| Then the sum of the diagonal entries of M is

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]],and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

If [{:(1,2,3):}] [{:(1,0,0),(0,1,0),(0,0,1):}][{:(1),(2),(3):}]=A, then the order of matrix A is :

if a matrix M is given by [{:(0,1,2),(1,2,3),(3,1,1):}] and if M[{:(alpha),(beta),(gamma):}]=[{:(1),(2),(3):}] then