Home
Class 12
MATHS
Let z = (-1 + sqrt(3i))/(2) , where i=...

Let ` z = (-1 + sqrt(3i))/(2)` , where ` i= sqrt(-1)` , and r,s` in {1,2,3}` . Let ` P =:[((-z)^(r) ,z^(2s)),(z^(2s), z^(r))]` and I be the identity
matrix of order 2 .Then the total number of ordered pairs (r,s) for which ` p^(2) = - I ` is ______

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

IF S = {z in C : bar(z) = iz^(2)} , then the maximum value of |z - sqrt(3) - i |^(2) in S is ________

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt thetalepi) of z is

If z = frac((1+i)(1+sqrt3i)^2)(1-i) , find |z| , arg z and barz .

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :