Home
Class 11
MATHS
The number of roots of (1-tantheta)(1+si...

The number of roots of `(1-tantheta)(1+sin2theta)=1+tanthetafortheta in [0,2pi]` is 3 (b) 4 (c) 5 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

Solve: (1-tantheta)(1+sin2theta)=(1+tantheta)

The number of roots of equation cos^(7)theta - sin^(4)theta = 1 that lie in the interval [0,2pi] is-

If tan^(-1)(cottheta)=2\ theta , then theta= +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

The number of solution of the equation sin2 theta-2cos theta+4sin theta=4in[0,5 pi] is equal to 3(b)4(c)5(d)6

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=

If sin theta+sin^(2)theta=1, then cos^(2)theta+cos^(4)theta=-1(b)1(c)0(d) None of these

If (1-tantheta)/(1+tantheta) = 1/sqrt3 , where theta in (0, pi/2) , then theta = (a) pi/6 (b) pi/4 (c) pi/12 (d) pi/3

2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta) is equal to 0(b)1(c)-1(d) None of these