Home
Class 11
MATHS
[(d^(2)x)/(dy^(2))" equals "],[[" 1) "((...

[(d^(2)x)/(dy^(2))" equals "],[[" 1) "((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)," 2) "-((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)],[" 3) "((d^(2)y)/(dx^(2)))^(-1)," 4) "-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))((dy)/(dx))^(-3)

(d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)) ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

[" The differential equation of the family of curves "],[y=c_(1)x^(3)+(c_(2))/(x)" where "c_(1)" and "c_(2)" are arbitrary "],[" constants,is "],[" O "x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)+3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))-x(dy)/(dx)+3y=0]

Show that (d ^(2)x)/( dy^2) =- ((d ^(2) y )/( dx ^(2))) ((dy)/(dx)) ^(-3)

If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=