Home
Class 12
MATHS
[cot^(-1)(xy+1)/(x-y)+cot^(-1)(y=+1)/(y-...

[cot^(-1)(xy+1)/(x-y)+cot^(-1)(y=+1)/(y-2)+cot^(-1)(zx+1)/(z-x)=],[[" (a) "0," (b) "1," (c) "cot^(-1)x+cot^(-1)y+cot^(-1)z," (d) Nane of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)""(xy+1)/(x-y)+cot^(-1)""(yz+1)/(y-z)+cot^(-1)""(zx+1)/(z-x)=

cot^(-1)""(xy+1)/(x-y)+cot^(-1)""(yz+1)/(y-z) +cot ^(-1) "" (zx +1)/(z-x)=0

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

If cot^(-1)x+cot^(-1)y=cot^(-1)c," then "(dy)/(dx)=

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that following cot^(-1)((xy+1)/(x-y)) +cot^(-1)((yz+1)/(y-z))+cot^(-1)((zx+1)/(z-x))=0, (0 lt xy, yz, zx lt 1)

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/4 then xy+zyz+zx+x+y+z=