Home
Class 12
MATHS
" 8.Prove that "2tan^(-1)(x)=cos^(-1)((1...

" 8.Prove that "2tan^(-1)(x)=cos^(-1)((1-x^(2))/(1+x^(2)));quad x>=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n

Prove that tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x""in[0,1]