Home
Class 12
MATHS
lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3...

`lim_(n->oo)sum_(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)`

A

`1/35`

B

`1/14`

C

`1/10`

D

`1/5`

Text Solution

Verified by Experts

`lim_(nto oo) sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^(2))`
`T_(r)=1/(sqrt(r/n n(3 sqrt(r/n)+4)^(2))`
`:. S=lim_(n to oo) 1/n sum_(1) ^(4n) 1/((3sqrt(r/n)+4)^(2)sqrt(r/n))=int_(0)^(4)(dx)/(sqrt(x)(3sqrt(x)+4)^(2))`
Put `3sqrt(x)+4=t`
or `3/2 1/(sqrt(x))dx=dt`
`:. S=2/3int_(4)^(10)(dt)/(t^(2))=2/3[-1/t]_(10)^(4)=1/10`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)sum_(r=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)

The value of sum_(k=2)^(oo){Lt_(n rarr oo)sum_(r=1)^(n)((sqrt(n))/(sqrt(r)(k sqrt(n)-sqrt(r))^(2))}]}

The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(sqrt(n))/(sqrt(r ) (3 sqrt(r)+4)sqrt(n)^(2)) is equal to

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))