Home
Class 12
MATHS
msum(r=1)^n1/nsqrt((n+r)/(n-r))...

`msum_(r=1)^n1/nsqrt((n+r)/(n-r))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Evaluate: ("lim")_(nvecoo)(sumr=1nsqrt(r)sumr=1n1/(sqrt(r)))/(sumr=1n r)

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

If sum_(r=1)^(n)r^(3)((C(n,r))/(C(n,r-1)))=14^(2) then n=

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0