Home
Class 12
MATHS
If the function f(x) satisfies the relat...

If the function f(x) satisfies the relation `f(x + y) =y(|x-1|)/((x-1)) f(x)+f(y)` with `f(1)=2.` then `lim_(x->1) f prime(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

If f(x) satisfies the relation f(x+ y) = f ( x) + f( y ) for all x, y in R and f(1) = 5 then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A function y=f(x) satisfies the differential equation (d y)/(d x)+x^2 y=-2 x, f(1)=1 . The value of |f^( prime prime)(1)| is