Home
Class 11
MATHS
Prove that: cos18^0-s in 18^0=sqrt(2)sin...

Prove that: `cos18^0-s in 18^0=sqrt(2)sin27^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that :cos9^(0)+sin9^(0)=sqrt(2)sin54^(@)

Prove that: sin18^(0)=(sqrt(5)-1)/(4)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that: (cos8^(0)+sin8^(0))/(cos8^(0)-sin8^(@))=tan37^(0)

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)

Prove that: sin65^(@)+cos65^(0)=sqrt(2)cos20^(@)