Home
Class 11
MATHS
COMPLEX NUMBERS | PROPERTIES OF ARGUMENT...

COMPLEX NUMBERS | PROPERTIES OF ARGUMENTS OF A COMPLEX NUMBER | `arg(z_1z_2)=arg(z_1)+arg(z_2)`, `arg(z^n)=n.argz` where `n in ZZ`, Angle between lines joining `z_1;z_2 and z_3;z_4`, `arg(z_1/z_2)=arg(z_1)-arg(z_2)`, `arg(barz)=-arg(z)`, `arg(1/barz)=arg((zbarz)/(barz))`, `arg(z/barz)=arg(z)-arg(barz)=2 arg(z)`, `z_1barz_2+barz_1z_2=2|z_1||z_2|cos(theta_1-theta_2)`, If z is purely imaginary ; then `arg(z)=pmpi/2`, If z is purely real ; then `arg(z)=0 or pi`, Locus of z ; if `arg(z)=theta` (=constant), Locus of z ; if `arg(z-a)=theta` (=constant) and `agt0`, Angles between two lines `alpha-beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

arg(bar(z))=-arg(z)

If z is purely imaginary ; then arg(z)=+-(pi)/(2)

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

arg((1)/(bar(z)))=arg((zbar(z))/(bar(z)))

arg((z_(1))/(z_(2)))=arg(z_(1))-arg(z_(2))

If z is purely imaginary and Im (z) lt 0 , then arg(i bar(z)) + arg(z) is equal to

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If arg (bar (z) _ (1)) = arg (z_ (2)) then