Home
Class 12
MATHS
DEFINITE INTEGRAL | PROPERTIES OF DEFINI...

DEFINITE INTEGRAL | PROPERTIES OF DEFINITE INTEGRALS | Property 5: If `f(x)` is a continuous function defined on `[0,a]` then `int_0 ^a f(x) dx = int_0^a f(a-x) dx`, Examples: `int_0 ^(pi/2) sinx / (sinx + cosx) dx`, Property 6: If f(x) is a continuous function defined on `[0, 2a]` then ` int_0 ^(2a)f(x)dx = int_0 ^a f(x) dx + int_0 ^a f(2a - x) dx`, Examples: `int_0 ^(2pi) 1 / ( 1 + e^sinx) dx`, Property 7: Let f(x) be a continuous function of x defined on `[0, a]` such that `f(a-x) = f(x)` then `int_0 ^a x f(x) dx = a/2 int_0 ^a f(x) dx`, Examples: `int_0 ^(pi/2) x / (sinx + cosx) dx`, Property 8: If f(x) is a continuous function defined on `[-a; a]` then `int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx`, Examples: `int_(-pi/2) ^(pi/2) 1 / (1 + e^sinx) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a f(a-x) dx=

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

Property 9: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=0 if f(x) is odd and 2int_(0)^(a)f(x)dx if f(x) is even

Property 10: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=2int_(0)^(a)f(x)dx if f(2a-x)=f(x) and 0 if f(2a-x)=-f(x)

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx