Home
Class 11
MATHS
Prove that cosalpha+cosbeta+cosgamma+cos...

Prove that `cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)`

Text Solution

AI Generated Solution

To prove the identity \( \cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma) = 4 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\beta + \gamma}{2}\right) \cos\left(\frac{\gamma + \alpha}{2}\right) \), we will start from the left-hand side (LHS) and manipulate it to match the right-hand side (RHS). ### Step 1: Start with the Left-Hand Side We begin with the expression: \[ \text{LHS} = \cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

Prove that: cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4(cos( alpha + beta ))/(2)(cos( beta + gamma ))/(2)(cos( gamma + alpha ))/(2)

Knowledge Check

  • Let A and B denote the statements A: cos alpha + cos beta + cos gamma = 0 B:sin alpha+sin beta + sin gamma = 0 If cos(beta-gamma)+cos(gamma-alpha)+cos (alpha-beta)= -3//2 Then

    A
    both A and B are true
    B
    both A and B are false
    C
    A is true B is false
    D
    A is false B is true.
  • Similar Questions

    Explore conceptually related problems

    Prove that cos alpha + cos beta + cos gamma + cos (alpha + beta + gamma) = 4 cos"" (alpha + beta)/(2) cos ""(beta + gamma)/(2) cos ""(gamma + alpha)/(2) .

    If cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0 , and cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=6K , K in R , then K is equal to :

    Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

    cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

    If alpha + beta + gamma = 2 theta , prove that cos theta + cos(theta- alpha) + cos(theta- beta) + cos(theta -gamma) = 4(cos (alpha/2) cos (beta/2) cos (gamma/2))

    If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ( beta + gamma) + cos ( gamma + alpha) + cos ( alpha + beta) = 0 sin ( beta + gamma ) + sin ( gamma + alpha ) + sin ( alpha + beta ) = 0

    Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)