Home
Class 12
MATHS
Prove that : int(sqrttanx)/(sqrttan + sq...

Prove that : `int(sqrttanx)/(sqrttan + sqrtcotx)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrttanx+sqrtcotx)dx

Integrate: int_0^(pi/2)(sqrttanx)/(sqrttanx+sqrtcotx)dx

Prove that : int_(0)^(pi/4)(sqrt(tanx)+sqrt(cotx))dx=sqrt(2).pi/2 .

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

int_0^(pi//2)(sqrttanx+sqrtcotx)dx

Evaluate : int(sqrttanx)/(sinxcosx)dx

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)

Prove that: int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))\ dx=sqrt(2)pi/2

Evaluate: int (sqrttanx+sqrtcotx)dx