Home
Class 12
MATHS
" 17.If "y=e^(a cos^(-1)x),-1<=x<=1" ,sh...

" 17.If "y=e^(a cos^(-1)x),-1<=x<=1" ,show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a cos^(-1)x),-1<=x<1, show that(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1 then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y = e^(a cos^(-1)x), -1 le x le 1 show that (1 - x)^(2) (d^2 y)/(dx^2) - x (dy)/(dx) - a^(2)y = 0 .

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y=e^(a cos^(-1)x)\ ,\ -1\ lt=xlt=1, show that (1-x^2)(d^2y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0

If y=e^(a cos^(-1)x),-2lexle1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx-a^(2)y=0