Home
Class 12
MATHS
If (log10 x)^2 -4|log10 x|+3=0, the prod...

If `(log_10 x)^2 -4|log_10 x|+3=0,` the product of roots of the equation is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)(x^(2)+x)=log_(10)(x^(3)-x) then the product of all solutions of the equation is

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

Product of roots of equation x^(log_(10)x)=100x is

(iv) Find the product of roots of the equation (log_(3)x)^(2)-2(log_(3)x)-5=0

find the non negative square root of product of reciprocal of roots of thhe equation (log_(10)^(2)x)+log_(10)(x^(2))=log_(10)^(2)2-1

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.

Find the non negative square root of product of reciprocal of roots of the equal to: log_(10)^(2)x+log_(10)x^(2)=log_(10)^(2)2-1