Home
Class 11
MATHS
If the product (sin1^0)(sin3^0)(sin5^0)(...

If the product `(sin1^0)(sin3^0)(sin5^0)(sin7^0)(sin 89^0)=1/(2^n)` then the value of `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the product (sin1^(@))(sin3^(@))(sin5^(@))(sin7^(@))...(sin89^(@))=((1)/(2^(n))) then find the value of n

If the product (sin1^(@))(sin3^(@))(sin5^(@))(sin7^(@))......*(sin89^(@))=(1)/(2^(n)) ,then find the value of n.

sin20^(0)sin40^(0)sin60^(0)sin80^(@)=(3)/(16)

Prove that: sin10^(0)sin30^(0)sin50^(@)sin70^(@)=(1)/(16)

prove that sin10^(0)+sin20^(0)+sin40^(@)+sin50^(0)=sin70^(0)+sin80^(@)

(cos20^(0)+8sin70^(0)sin50^(@)sin10^(0))/(sin^(2)80^(@)) is equal to

sin(2sin^(-1) 0.8)=

" The value of "(sin1^(0)+sin3^(0)+sin5^(0)+sin7^(0))/(cos1^(0)*cos2^(0)*sin4^(0))" is "

(sin8^(0)*sin52^(0)*sin68^(@))/(sin24^(0)) is equal to 12-1(1)/(4)

" If "sin^(2)1^(0)*sin^(2)3^(0)*sin^(2)5^(0)......sin^(2)89^(0)=m^(n)." Then "|m-n|=