Home
Class 12
MATHS
The value of (1)/(n) int(0)^(2npi) |sin ...

The value of `(1)/(n) int_(0)^(2npi) |sin x|- |(sin x)/(2)| dx` denotes G.I*F) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2pi) (sin x-|sin x|) dx equal to

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

The value of int_(0)^(2npi)[sin x cos x] dx is equal to

int_(0)^(2 pi)(sin x+|sin x|)dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

The value of int_((pi)/(4))^((pi)/(2))[sin x+[(2x)/(pi)]]dx where [.] denotes G.I.F.

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)