Home
Class 12
MATHS
The value of int(1)^(e^(6)) [(log x)/(3)...

The value of `int_(1)^(e^(6)) [(log x)/(3)] dx` (where [.] denotes the greatest integer function) is `(e^(a)-e^(b))` then the value of `(a)/(b)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest integer function.

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

Evaluate: int[(log x)/(3)]dx, where [.] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to