Home
Class 11
MATHS
If the value int(1-(cot x)^(2018))/(tan ...

If the value `int(1-(cot x)^(2018))/(tan x+(cot x)^(2019))dx=(1)/(k_(1))log_(e)|sin^(k_(2))x+cos^(k_(3))x|+C` then which of the following is/are TRUE' A) Sum of the digits in `k_(1)` is 4 B) `k_(2)=2018` C) `k_(3)=k_(1)` D) `k_(1)gtk_(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value int(1-(cot x)^(2008))/(tan x+(cot x)^(2009))dx=(1)/(k)ln|sin^(k)x+cos^(k)x|+c then find k.

If k_(1)=sin x cos^(3)x and k_(2)=cos x sin^(3)x then

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k

int(3^(x+1)-7^(x-1))/(21^(x))dx=K_(1)3^(-x)+K_(2)7^(-x)+C

If int(e^(9x)+e^(11x))/(e^(x)+e^(-x))dx=(e^(k_(1)x))/(k_(2))+c , where c denotes the constant of integration,then k_(1)+k_(2)=

If int(e^(9x)+e^(11x))/(e^(x)+e^(-x))dx=(e^(k_(1)x))/(k_(2))+c where c denotes the constant of integration,then k_(1)+k_(2) =

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .