Home
Class 11
MATHS
If p(x)=3(sin^(4)x+cos^(4)x+1)-2(sin^(6)...

If `p(x)=3(sin^(4)x+cos^(4)x+1)-2(sin^(6)x+cos^(6)x)` then the value of `P((pi)/(5))` is equal

Promotional Banner

Similar Questions

Explore conceptually related problems

For all x in R, let f(x)=sin^(4)x+cos^(4)x and g(x)=sin^(6)x+cos^(6)x, then (3f(x)-2g(x)) is equal to

If p = sin^(2)x + cos^(4)x , then

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

Show That 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

Show that 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

Show that: 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

If 3sin x+4 cos x=2, then the value of 3 cos x -4 sin x is equal to:

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

Let f(x)=3(cos x-sin x)^(4)+4(sin^(6)x+cos^(6)x)+6(sin x+cos x)^(2)-12 then f((pi)/(6))-f((pi)/(3)) is equal to

If p(x)=sin x(sin^(3)x+3)+cos x(cos^(3)x+4)+((1)/(2))sin^(2)2x+5 then find the range of p(x)