Home
Class 11
MATHS
If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)...

If `y=tan^(-1)(cot((pi)/(2)-x))` then `(dy)/(dx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=Cot^(-1)[tan((pi)/(2)-x)] then (dy)/(dx) =

If y=tan^(-1)(cot x)+cot^(-1)(tan x), then (dy)/(dx) is equal to (i)1( ii) 0( iii -1 (iv) -2

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=sqrt((1+tan x)/(1-tan x)) then (dy)/(dx)= is equal to

If y = tan^(-1) (x)/(2) - cot ^(-1) (x)/(2) , "then" (dy)/(dx) is equal to