Home
Class 12
MATHS
If the graph y=f(x) where f(x)=ax^(2)+bx...

If the graph `y=f(x)` where `f(x)=ax^(2)+bx+c`;`a, b, c in R`, `a!=0` has the maximum vertical height 4 , then :-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ax^(2)+bx+c, if a>0 then f(x) has minimum value at x=

Let f(x)=ax^(2)+bx+c, if f(-1) -1,f(3)<-4 and a!=0 then

If fig shows the graph of f(x)=ax^(2)+bx+c, then Fig ac 0 c.ab>0 d.abc<0

Let f(x)=3ax^(2)-4bx+c(a,b,c in R.a!=0) where a,b,c are in A.P.Then the equation f(x)=0 has

Let f(x)=ax^(2)+bx+c, where a,b,c in R,a!=0. Suppose |f(x)|<=1,x in[0,1], then

If f(x)=x^(3)+ax^(2)+bx+c is minimum at x=3 and maximum at x=-1, then-

If f(x)=x^(3)+ax^(2)+bx+c is minimum at x=3 and maximum at x=-1, then

If f(x)=ax^(2)+bx+c,a+b+c=0 then one root is

Let f(x)=ax^(2)+bx+c AA a,b,c in R,a!=0 satisfying f(1)+f(2)=0. Then,the quadratic equation f(x)=0 must have :