Home
Class 12
MATHS
If y=e^(x+e^(x+e^(x+.....oo),prove that...

If `y=e^(x+e^(x+e^(x+.....oo)`,prove that `(dy)/(dx)=y/(1-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If y=e^(x+e^(x+e^(x+....TOoo))) prove that dy/dx=y/((1-y))

y= e^(x+ e^(x+ e^(x+ ....oo))) then find (dy)/(dx)

If y = e ^(x + e ^(x + e^(x ...oo))), then (dy)/(dx)=

If y=e^(x+e^(x+e^(x+dotto\ oo))) , show that (dy)/(dx)=y/(1-y) .

Differentiate the following w.r.t.x. y = e^(x^(+ex + ex^(-"to" oo))), prove that (dy)/(dx) = y/(1 - y)

If y=e^(x+e^(x+e^((((( tooo))))))), show that (dy)/(dx)=y/(1-y)

If y=e^(x)+e^(x)+e^(((x+rarr oo))), show that (dy)/(dx)=(y)/(1-y)

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=