Home
Class 10
MATHS
z=-sqrt(3)+i...

z=-sqrt(3)+i

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=2+sqrt(3)i, then zbar(z)=(a)(2-sqrt(3)i)(b)7(c)8(d)13

Among the complex numbers z satisfying the condition |z+3-sqrt(3)i|=sqrt(3), find the number having the least positive argument

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

Find the modulus and the arguments of the complex numbers given below:- z= -sqrt3+i

Write polar form of the complex number z=sqrt3+i

If z_(1)=sqrt(3)+i sqrt(3) and z_(2)=sqrt(3)+i then the complex number ((z_(1))/(z_(2))) lies in the

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=