Home
Class 11
MATHS
If alpha,beta,gamma are acute angles and...

If `alpha,beta,gamma` are acute angles and `costheta=sinbeta//sinalpha,cosvarphi=singamma//sinalpha and cos(theta-varphi) = sinbetasingamma` , then the value of `tan^2alpha-tan^2beta-tan^2gamma` is equal to (a)`-1` (b) `0` (c) `1` (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are acute angle such that cos alpha=tan beta,cos beta=tan gamma and cos gamma=tan alpha then

If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

If a tan alpha+sqrt(a^(2)-1)tan beta+sqrt(a^(2)+1)tan gamma=2a where a is a constant and alpha,beta and gamma are variable angles.Then the least value of tan^(2)alpha+tan^(2)beta+tan^(2)gamma is equal to

If alpha, beta are acute angles and cos 2alpha = (3cos2beta -1)/(3-cos2 beta) prove that tan alpha tan beta= sqrt2 :1 .

alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta) then tan alpha cot beta=

If each of alpha beta and gamma is a positive acute angle such that sin(alpha+beta-gamma)=(1)/(2)cos(beta+gamma-alpha)=(1)/(2) and tan(gamma+alpha-beta)=1 find the values of alpha,beta and gamma