Home
Class 9
MATHS
If a!=b!=c then prove that (a^(2)+b^(2)+...

If `a!=b!=c` then prove that `(a^(2)+b^(2)+c^(2))/(ab+bc+ca)>1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in G.P.then prove that (a^(2)+ab+b^(2))/(bc+ca+ab)=(b+a)/(c+b)

Prove that a^(2)+b^(2)+c^(2)=2(ab cos C +bc cosA +ca cos B)

If a+b+c=0 , then prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3

If ab+bc+ca=0 then prove that a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2)=-2abc (a+b+c)

If a+b+c=0 then prove the following. a^(2)+b^(2)+c^(2) = -2(bc+ca+ab)

a,b,c are positive numbers. Prove that, a^(2) + b^(2) + c^(2) gt ab + bc + ca

If (a-b),(b-c),(c-a) are in G.P.then prove that (a+b+c)^(2)=3(ab+bc+ca)

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

If a+b+c=0 , then prove that (b+c)^2/(3bc )+ (c+a)^2/(3ca )+ (a+b)^2/(3ab )=1

If a + b + c = 0 , then prove that 1/(2a^2+bc)+1/(2b^2+ca)+1/(2c^2+ab)=0