Home
Class 11
MATHS
If un=sin^("n")theta+cos^ntheta, then pr...

If `u_n=sin^("n")theta+cos^ntheta,` then prove that `(u_5-u_7)/(u_3-u_5)=(u_3)/(u_1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If : sin^(6)theta+cos^(6)theta=1-3u^(2)+3u^(4), "then" : u =

If u_(n)=sin(n theta)sec^(n)theta,v_(n)=cos(n theta)sec^(n)thetan in Nn!=1 then (v_(n)-v_(n-1))/(u_(n-1))+(1)/(n)((u_(n))/(v_(n)))=

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If U_(n)=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n), then prove that U_(n+1)=8U_(n)-4U_(n-1)

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

If u_(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u_(6) - 3 u_(4) +1 is :