Home
Class 12
MATHS
[" 1."[-a^(2),ab,ac],[ab,-b^(2),bc],[ac,...

[" 1."[-a^(2),ab,ac],[ab,-b^(2),bc],[ac,bc,-c^(2)]=4a^(2)b^(2)c^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find the value of lambda

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2