Home
Class 11
MATHS
Four numbers n1,n2,n3a n dn4 are given a...

Four numbers `n_1,n_2,n_3a n dn_4` are given as `n_1=sin15^0-cos15^0,n_2=cos93^0+sin93^0,n_3=tan27^0-cot27^0,n_4=cot127^0+tan127^0dot` `n_1<0` (b) `n_2<0` (c) `n_3<0` (d) `n_4<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Four numbers n_1,n_2,n_3andn_4 are given as n_1=sin15^@-cos15^@,n_2=cos93^@+sin93^@,n_3=tan27^@-cot27^@,n_4=cot127^@+tan127^@ ,Then

lim_(n rarr0)n*sin(1/n)

tan A+2tan2A+....+2^(n-1)tan2^(n-1)A+2^(n)cot2^(n)A

lim_(n rarr0)((n-1+cos n)/(n))^(1/n)

lim_ (n rarr0) (sin (pi cos ^ (2) n)) / (n ^ (2))

Prove that for ngt1 . int_0^1(cos^-1x)^ndx=n(pi/2)^(n-1)-n(n-1)int_0^1(cos^-1x)^(n-2)dx

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

sin^(2)n theta-sin^(2)(n-1)theta=sin^(2)theta where n is constant and n!=0,1

Let n be the smallest natural number for which the limit lim_(x rarr0)(sin^(n)x)/(cos^(2)x(1-cos x)^(3)) exists,then tan ^(-1)(tan n) is equal to